Show last authors
1 {{box cssClass="floatinginfobox" title="**Contents**"}}
2 {{toc/}}
3 {{/box}}
4
5
6 In order to create a design, we must first have concluded an [[analysis>>doc:PRE-Stress.PRE-Stress User Manual.Performing a calculation.WebHome||anchor="Analysis"]].
7
8 [[image:1591600730761-134.png]]
9
10 (% border="0" %)
11 |(% style="width:91px" %)[[image:1591600771378-309.png]]|(% style="width:1399px" %)(((
12 In the PRE-Stress application, the “design” stage calculates the capacities of a beam sufficient to address the calculated loads. Therefore, designing without the analysis stage cannot produce a meaningful result.
13
14 To view the design results, go to the context selector and click on Design. The loadcases will be shown, with the most significant control of the utilization ratio (on a per-section basis) displayed as contiguous lines along the beam. The sidebar will allow you to toggle various visualization methods, and to exaggerate or reduce the representation of deformation, although the actual values will remain unaffected. Through the project tree handler, you can choose to view of all load combinations simultaneously or one at a time.
15
16
17 When in Design mode (i.e. viewing design results), the Results option appears as a new menu, allowing you to visualize various factors related to design.
18 )))
19
20 Firstly, the **Utilization Colors** option allows the user to set the colors used in the graphical representation of design results.
21
22 [[image:1591600835257-231.png]]
23
24 Utilization Table lets the user view the Utilization Ratios of the load combinations.
25
26 [[image:1591600947559-749.png]]
27
28 Several more extensive tables provide information on bending, shear, stress, and other factors.
29
30 = {{id name="Bending, SLS"/}}Bending, SLS =
31
32 The bending table shows various bending data at a position along the axis of the beam specified in the Section column.
33
34 SLS elements use the symbols below:
35
36 (% border="1" class="table-hover" style="width:571px" %)
37 |=(% style="width: 138px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Symbol|=(% style="width: 100px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Unit|=(% style="width: 337px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Description
38 |(% style="width:138px" %)M,,d,,|(% style="width:100px" %)kNm|(% style="width:337px" %)Moment
39 |(% style="width:138px" %)N,,i,,|(% style="width:100px" %)kN|(% style="width:337px" %)Prestressing force
40 |(% style="width:138px" %)M,,i,,|(% style="width:100px" %)kNm|(% style="width:337px" %)Moment due to prestressing force
41 |(% style="width:138px" %)σ,,c,top,,|(% style="width:100px" %)MPa|(% style="width:337px" %)Concrete stress top
42 |(% style="width:138px" %)σ,,c,btm,,|(% style="width:100px" %)MPa|(% style="width:337px" %)Concrete stress bottom
43 |(% style="width:138px" %)Crack stadium|(% style="width:100px" %)-|(% style="width:337px" %)I (uncracked), II (cracked)
44 |(% style="width:138px" %)σ,,s,top,,|(% style="width:100px" %)MPa|(% style="width:337px" %)Reinforcement stress top
45 |(% style="width:138px" %)σ,,s,btm,,|(% style="width:100px" %)MPa|(% style="width:337px" %)Reinforcement stress bottom
46 |(% style="width:138px" %)M,,cr,,|(% style="width:100px" %)kNm|(% style="width:337px" %)Moment at point of cracking
47 |(% style="width:138px" %)w,,k,,|(% style="width:100px" %)mm|(% style="width:337px" %)Crack Width
48 |(% style="width:138px" %)z|(% style="width:100px" %)mm|(% style="width:337px" %)Deflection
49
50 Example of result-table (Bending, SLS):
51
52 [[image:1591601346285-868.png]]
53
54 = {{id name="Bending, ULS"/}}Bending, ULS =
55
56 ULS elements use the following symbols:
57
58 (% border="1" class="table-hover" style="width:571px" %)
59 |=(% style="width: 138px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Symbol|=(% style="width: 100px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Unit|=(% style="width: 337px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Description
60 |(% style="width:138px" %)N,,d,,|(% style="width:100px" %)kN|(% style="width:337px" %)Normal force
61 |(% style="width:138px" %)M,,d,,|(% style="width:100px" %)kNm|(% style="width:337px" %)Moment due to loads
62 |(% style="width:138px" %)M,,u,,|(% style="width:100px" %)kNm|(% style="width:337px" %)Bending moment capacity
63 |(% style="width:138px" %)M,,d,, / M,,u,,|(% style="width:100px" %)-|(% style="width:337px" %)Utilization
64 |(% style="width:138px" %)z|(% style="width:100px" %)mm|(% style="width:337px" %)Internal lever
65 |(% style="width:138px" %)x|(% style="width:100px" %)mm|(% style="width:337px" %)Compression zone height
66 |(% style="width:138px" %)ε,,c,,|(% style="width:100px" %)‰|(% style="width:337px" %)Concrete strain
67 |(% style="width:138px" %)ε,,s,,|(% style="width:100px" %)‰|(% style="width:337px" %)Steel strain
68 |(% style="width:138px" %)σ,,s,top,,|(% style="width:100px" %)MPa|(% style="width:337px" %)Reinforcement stress top
69 |(% style="width:138px" %)σ,,s,btm,,|(% style="width:100px" %)MPa|(% style="width:337px" %)Reinforcement stress bottom
70 |(% style="width:138px" %)σ,,sc,,|(% style="width:100px" %)MPa|(% style="width:337px" %)Stress in the most compressed (or least tensile) reinforcement bare/wire
71 |(% style="width:138px" %)σ,,st,,|(% style="width:100px" %)MPa|(% style="width:337px" %)Stress in the most tensile (or least compressed) reinforcement bare/wire
72
73 Example of result-table (Bending, ULS) for hollowcore elements:
74
75 [[image:1617691422947-353.png]]
76
77 [[image:bug_animated.gif]]
78
79 = {{id name="Shear"/}}Shear =
80
81 Shear values only apply to ULS load combinations.
82
83 There are two different tables, if the element is calculated with or without stirrups.
84
85 == {{id name="Shear, without stirrups"/}}Shear, without stirrups ==
86
87 Some results will only show up depending on the structure or loads. For instance will only torsion-related results show up in the table if atleast one load has been defined with an excentricity, or hollowcore elements has atleast one core filling.
88
89 (% border="1" class="table-hover" style="width:669px" %)
90 |=(% style="width: 138px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Symbol|=(% style="width: 100px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Unit|=(% style="width: 430px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Description
91 |(% style="width:138px" %)V,,d,,|(% style="width:100px" %)kN|(% style="width:430px" %)Shear design force
92 |(% style="width:138px" %)T,,d,,|(% style="width:100px" %)kNm|(% style="width:430px" %)Torsion design moment (conditional)
93 |(% style="width:138px" %)V,,Rd,,|(% style="width:100px" %)kN|(% style="width:430px" %)Final shear design capacity
94 |(% style="width:138px" %)V,,d,, / V,,Rd,,|(% style="width:100px" %)-|(% style="width:430px" %)Utilization with regard to concrete shear capacity
95 |(% style="width:138px" %)V,,Rd,max,,|(% style="width:100px" %)kN|(% style="width:430px" %)Maximum shear capacity
96 |(% style="width:138px" %)V,,cw,,|(% style="width:100px" %)kN|(% style="width:430px" %)Capacity due to web shear failure
97 |(% style="width:138px" %)V,,cb,,|(% style="width:100px" %)kN|(% style="width:430px" %)Capacity due to bend shear failure
98 |(% style="width:138px" %)V,,p,,|(% style="width:100px" %)kN|(% style="width:430px" %)Shear capacity increase/decrease due to normal force
99 |(% style="width:138px" %)V,,i,,|(% style="width:100px" %)kN|(% style="width:430px" %)Shear capacity increase due to variable section depth
100 |(% style="width:138px" %)V,,cfc,,|(% style="width:100px" %)kN|(% style="width:430px" %)Shear capacity of core fillings (conditional, hollowcore only)
101 |(% style="width:138px" %)V,,Etd,,|(% style="width:100px" %)kN|(% style="width:430px" %)Shear capacity decrease due to torsion (conditional, hollowcore only)
102 |(% style="width:138px" %)b,,w,,|(% style="width:100px" %)mm|(% style="width:430px" %)Web width at neutral layer (accumulated)
103 |(% style="width:138px" %)d|(% style="width:100px" %)mm|(% style="width:430px" %)Effective depth
104
105 Example of result-table (Shear, ULS, without stirrups):
106
107 [[image:1591601858963-952.png]]
108
109 == {{id name="Shear, with stirrups"/}}Shear, with stirrups ==
110
111 Shear values for stirrups have different notation:
112
113 (% border="1" class="table-hover" style="width:669px" %)
114 |=(% style="width: 138px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Symbol|=(% style="width: 100px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Unit|=(% style="width: 430px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Description
115 |(% style="width:138px" %)V,,Sd,,|(% style="width:100px" %)kN|(% style="width:430px" %)Shear design force for stirrups
116 |(% style="width:138px" %)V'|(% style="width:100px" %)kN|(% style="width:430px" %)Shear field force, used for design of stirrups
117 |(% style="width:138px" %)V,,Rd,s,,|(% style="width:100px" %)kN|(% style="width:430px" %)Shear design capacity for stirrups
118 |(% style="width:138px" %)V' / V,,Rd,s,,|(% style="width:100px" %)-|(% style="width:430px" %)Shear utilization for stirrups
119 |(% style="width:138px" %)V,,Rd,max,,|(% style="width:100px" %)kN|(% style="width:430px" %)Maximum shear capacity
120 |(% style="width:138px" %)(A,,sw ,,/ s),,cur,,|(% style="width:100px" %)mm^^2^^/m|(% style="width:430px" %)Applied (current) stirrup reinforcement area
121 |(% style="width:138px" %)(A,,sw ,,/ s),,req,,|(% style="width:100px" %)mm^^2^^/m|(% style="width:430px" %)Required stirrup reinforcement area
122 |(% style="width:138px" %)(A,,sw,, / s),,req min,,|(% style="width:100px" %)mm^^2^^/m|(% style="width:430px" %)Minimum stirrup reinforcement area
123 |(% style="width:138px" %)b,,w,,|(% style="width:100px" %)mm|(% style="width:430px" %)Web width
124 |(% style="width:138px" %)z|(% style="width:100px" %)mm|(% style="width:430px" %)Internal lever
125
126 Example of result-table (Shear, ULS, with stirrups):
127
128 [[image:1591601932074-971.png]]
129
130 = {{id name="Crack width"/}}Crack width =
131
132 Crack width results are only available for SLS
133
134 (% border="1" class="table-hover" style="width:669px" %)
135 |=(% style="width: 138px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Symbol|=(% style="width: 100px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Unit|=(% style="width: 430px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Description
136 |(% style="width:138px" %)Crack stadium|(% style="width:100px" %)-|(% style="width:430px" %)I (uncracked), II (cracked)
137 |(% style="width:138px" %)A|(% style="width:100px" %)m^^2^^|(% style="width:430px" %)Effective area of cross-section
138 |(% style="width:138px" %)I|(% style="width:100px" %)m^^4^^|(% style="width:430px" %)Effective moment of inertia
139 |(% style="width:138px" %)ζ|(% style="width:100px" %)-|(% style="width:430px" %)Ratio between cracked and uncracked cross-section
140 |(% style="width:138px" %)M,,cr,,|(% style="width:100px" %)kNm|(% style="width:430px" %)Moment at point of cracking
141 |(% style="width:138px" %)A,,s,min,,|(% style="width:100px" %)mm^^2^^|(% style="width:430px" %)Minimum longitudinal reinforcement area required
142 |(% style="width:138px" %)A,,s,curr,,|(% style="width:100px" %)mm^^2^^|(% style="width:430px" %)Current longitudinal reinforcement area
143 |(% style="width:138px" %)s,,r,max,,|(% style="width:100px" %)mm|(% style="width:430px" %)Maximum distance between cracks
144 |(% style="width:138px" %)w,,k,,|(% style="width:100px" %)mm|(% style="width:430px" %)Crack width
145
146 Example of result-table (Crack width):
147
148 [[image:1591601993682-989.png]]
149
150 = {{id name="Topping joint"/}}Topping joint =
151
152 For the case of active topping, separate bending and shear tables are shown. In addition, a table showing results pertaining the joint between the beam and topping is available.
153
154 (% border="1" class="table-hover" style="width:669px" %)
155 |=(% style="width: 138px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Symbol|=(% style="width: 100px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Unit|=(% style="width: 430px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Description
156 |(% style="width:138px" %)V,,d,,|(% style="width:100px" %)kN|(% style="width:430px" %)Shear design force
157 |(% style="width:138px" %)F,,joint,,|(% style="width:100px" %)kN/m|(% style="width:430px" %)Joint force
158 |(% style="width:138px" %)f,,f,,|(% style="width:100px" %)MPa|(% style="width:430px" %)Joint stress
159 |(% style="width:138px" %)[[b,,joint,,>>Topping joint width (PRE-Stress)]]|(% style="width:100px" %)m|(% style="width:430px" %)[[Joint width>>doc:.Topping joint width (PRE-Stress).WebHome]]
160 |(% style="width:138px" %)F,,Rd,,|(% style="width:100px" %)kN/m|(% style="width:430px" %)Joint capacity
161 |(% style="width:138px" %)A,,sfa,,|(% style="width:100px" %)mm^^2^^/m|(% style="width:430px" %)Actual shear reinforcement area in joint
162 |(% style="width:138px" %)A,,sfd,,|(% style="width:100px" %)mm^^2^^/m|(% style="width:430px" %)Required shear reinforcement area in joint
163
164 Example of result-table (Topping joint):
165
166 [[image:1591602058278-399.png]]
167
168 = (% style="font-family:inherit; font-size:29px" %){{id name="Torsion, transverse capacity"/}}Torsion, transverse capacity(%%) =
169
170 When a torsion moment is present the following tables are shown for __non-hollowcore elements__. Torsional capacity for hollowcores are shown in the [[shear table>>||anchor="Shear, without stirrups"]].
171
172 (% border="1" class="table-hover" style="width:669px" %)
173 |=(% style="width: 138px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Symbol|=(% style="width: 100px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Unit|=(% style="width: 430px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Description
174 |(% style="width:138px" %)T,,Ed,,|(% style="width:100px" %)kNm|(% style="width:430px" %)Torsion design moment
175 |(% style="width:138px" %)V,,Ed,,|(% style="width:100px" %) |(% style="width:430px" %)
176 |(% style="width:138px" %)V',,T,,|(% style="width:100px" %) |(% style="width:430px" %)
177 |(% style="width:138px" %)V,,Rd,s,,|(% style="width:100px" %) |(% style="width:430px" %)
178 |(% style="width:138px" %)V',,T,,/V,,Rd,s,,|(% style="width:100px" %) |(% style="width:430px" %)
179 |(% style="width:138px" %)V,,Rd,max,,|(% style="width:100px" %) |(% style="width:430px" %)
180 |(% style="width:138px" %)(A,,sw ,,/ s),,cur,,|(% style="width:100px" %)mm^^2^^/m|(% style="width:430px" %)Applied (current) stirrup reinforcement area
181 |(% style="width:138px" %)(A,,sw ,,/ s),,req,,|(% style="width:100px" %)mm^^2^^/m|(% style="width:430px" %)Required stirrup reinforcement area
182 |(% style="width:138px" %)(A,,sw,, / s),,req min,,|(% style="width:100px" %)mm^^2^^/m|(% style="width:430px" %)Minimum stirrup reinforcement area
183 |(% style="width:138px" %)A,,k,,|(% style="width:100px" %) |(% style="width:430px" %)
184
185 Example of result-table (Torsion):
186
187 [[image:1591602238762-394.png]]
188
189 = (% style="font-family:inherit; font-size:29px" %){{id name="Torsion, longitudinal capacity"/}}Torsion, longitudinal capacity(%%) =
190
191 (% border="1" class="table-hover" style="width:669px" %)
192 |=(% style="width: 138px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Symbol|=(% style="width: 100px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Unit|=(% style="width: 430px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Description
193 |(% style="width:138px" %)T,,Ed,,|(% style="width:100px" %)kNm|(% style="width:430px" %)Torsion design moment
194 |(% style="width:138px" %)T,,Rd,l,,|(% style="width:100px" %)kNm|(% style="width:430px" %)Torsion capacity (longitudinal)
195 |(% style="width:138px" %)T,,Ed,, /T,,Rd,l,,|(% style="width:100px" %)-|(% style="width:430px" %)Utilization with regard to (longitudinal) torsion capacity
196 |(% style="width:138px" %)A,,sl,cur,,|(% style="width:100px" %)mm^^2^^|(% style="width:430px" %)
197 |(% style="width:138px" %)A,,sl,req,,|(% style="width:100px" %)mm^^2^^|(% style="width:430px" %)
198 |(% style="width:138px" %)u,,k,,|(% style="width:100px" %)m|(% style="width:430px" %)
199 |(% style="width:138px" %)A,,k,,|(% style="width:100px" %)m^^2^^|(% style="width:430px" %)
200
201 Example of result-table (Torsion):
202
203 [[image:1591602368807-691.png]]
204
205 = {{id name="Punching"/}}Punching =
206
207 For hollowcores a Punching table presented, if there are point loads defined.
208
209 (% border="1" class="table-hover" style="width:669px" %)
210 |=(% style="width: 138px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Symbol|=(% style="width: 100px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Unit|=(% style="width: 430px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Description
211 |(% style="width:138px" %)Base LC|(% style="width:100px" %)-|(% style="width:430px" %)Name of base load case in which the point is added
212 |(% style="width:138px" %)x|(% style="width:100px" %)m|(% style="width:430px" %)Position of the point load along the hollwocore
213 |(% style="width:138px" %)e|(% style="width:100px" %)m|(% style="width:430px" %)Eccentricity
214 |(% style="width:138px" %)b|(% style="width:100px" %)mm|(% style="width:430px" %)
215 |(% style="width:138px" %)F,,d,,|(% style="width:100px" %)kN|(% style="width:430px" %)Design load
216 |(% style="width:138px" %)b,,eff,,|(% style="width:100px" %)m|(% style="width:430px" %)Effective width
217 |(% style="width:138px" %)h|(% style="width:100px" %)m|(% style="width:430px" %)height
218 |(% style="width:138px" %)σ,,cp,,|(% style="width:100px" %)MPa|(% style="width:430px" %)Compressive stress at the centroidal axis
219 |(% style="width:138px" %)V,,rd,,|(% style="width:100px" %)kN|(% style="width:430px" %)Punching capacity
220 |(% style="width:138px" %)F,,d,, / V,,rd,,|(% style="width:100px" %)-|(% style="width:430px" %)
221
222 Example of result-table (Punching):
223
224 [[image:1591602488439-699.png]]
225
226 = Flange reinforcement =
227
228 For flanges beams with excentric loads placed on the flange, the required 'hanging reinforcement' is calculated and presented in the 'Flange Reinforcement' table.
229
230 (% border="1" class="table-hover" style="width:669px" %)
231 |=(% style="width: 138px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Symbol|=(% style="width: 100px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Unit|=(% style="width: 430px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Description
232 |(% style="width:138px" %)Load ID|(% style="width:100px" %)-|(% style="width:430px" %)index of the considered loads in this load combination
233 |(% style="width:138px" %)Load|(% style="width:100px" %)kN, kNm|(% style="width:430px" %)Magnitude of the design load
234 |(% style="width:138px" %)Span|(% style="width:100px" %)m|(% style="width:430px" %)Distribution length of the calculated reinforcement
235 |(% style="width:138px" %)A,,s,,|(% style="width:100px" %)mm^^2^^/m|(% style="width:430px" %)Required amount of reinforcement
236 |(% style="width:138px" %)Util|(% style="width:100px" %)-|(% style="width:430px" %)Utilization
237
238 [[image:1591602547363-224.png]]
239
240 = {{id name="Spalling (Hollowcore)"/}}Spalling (Hollowcore) =
241
242 The spalling calculation is only being performed for the first serviceability limit state in a dependency-chain for hollowcores elements. The spalling table shows the spalling for each web. Calculation is being performed according to EN 1168 4.3.3.2.1 a)
243
244 (% border="1" class="table-hover" style="width:571px" %)
245 |=(% style="width: 138px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Symbol|=(% style="width: 100px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Unit|=(% style="width: 337px; background-color: rgb(0, 118, 203);" %)(% style="color:#ffffff" %)Description
246 |(% style="width:138px" %)web|(% style="width:100px" %) |(% style="width:337px" %)Shows the spalling calculation for each web. Web number from left (1, top of the table) to right (n, bottom of the table). n = number of webs.
247 |(% style="width:138px" %)P,,0,,|(% style="width:100px" %)kN|(% style="width:337px" %)Initial prestressing force just after release in the considered web or the total prestressing force in case of solid slabs
248 |(% style="width:138px" %)b,,w,,|(% style="width:100px" %)mm|(% style="width:337px" %)Thickness of the individual web or the total width //b// of the slab in case of a solid slab
249 |(% style="width:138px" %)h,,w,,|(% style="width:100px" %)mm|(% style="width:337px" %)Height of the web
250 |(% style="width:138px" %)e,,o,,|(% style="width:100px" %)mm|(% style="width:337px" %)Eccentricity of the prestressing steel
251 |(% style="width:138px" %)α,,e,,|(% style="width:100px" %)-|(% style="width:337px" %)(e,,o,, - k) / h,,w,,
252 |(% style="width:138px" %)l,,pt1,,|(% style="width:100px" %)mm|(% style="width:337px" %)Lower design value of the transmission length
253 |(% style="width:138px" %)σ,,sp,,|(% style="width:100px" %)MPa|(% style="width:337px" %)Spalling stress
254 |(% style="width:138px" %)f,,ct,,|(% style="width:100px" %)MPa|(% style="width:337px" %)Tension strength of the concrete
255 |(% style="width:138px" %)Utilization|(% style="width:100px" %) |(% style="width:337px" %)Utilization rounded to two decimals
256 |(% style="width:138px" %)Comment|(% style="width:100px" %) |(% style="width:337px" %)**OK** or (% style="color:#c0392b" %)**Not OK!**(%%), depending on if the utilization is above or below 100%
257
258 Example of result-table (Spalling, Hollowcore):
259
260 [[image:1617688487574-575.png]]
261
262 = Fire results =
263
264 Fire-related design results can be found here: [[Fire results>>doc:PRE-Stress.PRE-Stress User Manual.Viewing fire-related design results.WebHome]].
265
266
Copyright 2020 StruSoft AB
PRE-Stress Documentation